Genetic factors required to maintain repression of a paramutagenic maize pl1 allele.
نویسندگان
چکیده
A genetic screen identified two novel gene functions required to maintain mitotically and meiotically heritable gene silencing associated with paramutation of the maize purple plant 1 (pl1) locus. Paramutation at pl1 leads to heritable alterations of pl1 gene regulation; the Pl-Rhoades (Pl-Rh) allele, which typically confers strong pigmentation to juvenile and adult plant structures, changes to a lower expression state termed Pl'-mahogany (Pl'). Paramutation spontaneously occurs at low frequencies in Pl-Rh homozygotes but always occurs when Pl-Rh is heterozygous with Pl'. We identified four mutations that caused increased Pl' pigment levels. Allelism tests revealed that three mutations identified two new maize loci, required to maintain repression 1 (rmr1) and rmr2 and that the other mutation represents a new allele of the previously described mediator of paramutation 1 (mop1) locus. RNA levels from Pl' are elevated in rmr mutants and genetic tests demonstrate that Pl' can heritably change back to Pl-Rh in rmr mutant individuals at variable frequencies. Pigment levels controlled by two pl1 alleles that do not participate in paramutation are unaffected in rmr mutants. These results suggest that RMR functions are intimately involved in maintaining the repressed expression state of paramutant Pl' alleles. Despite strong effects on Pl' repression, rmr mutant plants have no gross developmental abnormalities even after several generations of inbreeding, implying that RMR1 and RMR2 functions are not generally required for developmental homeostasis.
منابع مشابه
Multiple trans-sensing interactions affect meiotically heritable epigenetic states at the maize pl1 locus.
Interactions between specific maize purple plant1 (pl1) alleles result in heritable changes of gene regulation that are manifested as differences in anthocyanin pigmentation. Transcriptionally repressed states of Pl1-Rhoades alleles (termed Pl') are remarkably stable and invariably facilitate heritable changes of highly expressed states (termed Pl-Rh) in Pl'/Pl-Rh plants. However, Pl' can rever...
متن کاملRmr6 maintains meiotic inheritance of paramutant states in Zea mays.
Paramutation generates heritable changes affecting regulation of specific alleles found at several Zea mays (maize) loci that encode transcriptional regulators of anthocyanin biosynthetic genes. Although the direction and extent of paramutation is influenced by poorly understood allelic interactions occurring in diploid sporophytes, two required to maintain repression loci (rmr1 and rmr2), as w...
متن کاملA Novel Snf2 Protein Maintains trans-Generational Regulatory States Established by Paramutation in Maize
Paramutations represent heritable epigenetic alterations that cause departures from Mendelian inheritance. While the mechanism responsible is largely unknown, recent results in both mouse and maize suggest paramutations are correlated with RNA molecules capable of affecting changes in gene expression patterns. In maize, multiple required to maintain repression (rmr) loci stabilize these paramut...
متن کاملOverlapping RdDM and non-RdDM mechanisms work together to maintain somatic repression of a paramutagenic epiallele of maize pericarp color1
Allelic variation at the Zea mays (maize) pericarp color1 (p1) gene has been attributed to epigenetic gene regulation. A p1 distal enhancer, 5.2 kb upstream of the transcriptional start site, has demonstrated variation in DNA methylation in different p1 alleles/epialleles. In addition, DNA methylation of sequences within the 3' end of intron 2 also plays a role in tissue-specific expression of ...
متن کاملrequired to maintain repression2 is a novel protein that facilitates locus-specific paramutation in maize.
Meiotically heritable epigenetic changes in gene regulation known as paramutations are facilitated by poorly understood trans-homolog interactions. Mutations affecting paramutations in maize (Zea mays) identify components required for the accumulation of 24-nucleotide RNAs. Some of these components have Arabidopsis thaliana orthologs that are part of an RNA-directed DNA methylation (RdDM) pathw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 157 1 شماره
صفحات -
تاریخ انتشار 2001